Molecular computing: Does DNA compute?

نویسندگان

  • Daniel E. Rozen
  • Steve McGrew
  • Andrew D. Ellington
چکیده

The concise algorithm by which protein functions are encoded in DNA sequences, and the flexible and adaptable operating systems of biological organisms, have long been coveted by computer scientists. Similarly, the information storage capacity of computers and their extraordinary problem-solving speed have been the envy of biologists. The parallels between the two systems are many, and it would seem natural to try to combine them. Indeed, computer scientists have been quick to take advantage of many of the information-handling paradigms that have been tried and adopted by evolution. Neural nets, genetic algorithms and cellular automata all attempt to reproduce the elegance of biological systems in silicon. But despite the fact that the binary logic of machine code is superficially similar to the quaternary logic of base-pairing, reproducing the speed of computers in carbon has until recently been unattainable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SIMPLE ALGORITHM FOR COMPUTING TOPOLOGICAL INDICES OF DENDRIMERS

Dendritic macromolecules’ have attracted much attention as organic examples of well-defined nanostructures. These molecules are ideal model systems for studying how physical properties depend on molecular size and architecture. In this paper using a simple result, some GAP programs are prepared to compute Wiener and hyper Wiener indices of dendrimers.

متن کامل

SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD

In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...

متن کامل

On ‎c‎omputing the general Narumi-Katayama index of some ‎graphs

‎The Narumi-Katayama index was the first topological index defined‎ ‎by the product of some graph theoretical quantities‎. ‎Let $G$ be a ‎simple graph with vertex set $V = {v_1,ldots‎, ‎v_n }$ and $d(v)$ be‎ ‎the degree of vertex $v$ in the graph $G$‎. ‎The Narumi-Katayama ‎index is defined as $NK(G) = prod_{vin V}d(v)$‎. ‎In this paper,‎ ‎the Narumi-Katayama index is generalized using a $n$-ve...

متن کامل

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

Computing the Szeged index of 4,4 ׳-bipyridinium dendrimer

Let e be an edge of a G connecting the vertices u and v. Define two sets N1 (e | G) and N2(e |G) as N1(e | G)= {xV(G) d(x,u) d(x,v)} and N2(e | G)= {xV(G) d(x,v) d(x,u) }.The number of elements of N1(e | G) and N2(e | G) are denoted by n1(e | G) and n2(e | G) , respectively. The Szeged index of the graph G is defined as Sz(G) ( ) ( ) 1 2 n e G n e G e E    . In this paper we compute th...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1996